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Abstract

[419] The standard approach to solve prediction tasks is to apply induc-
tive methods such as, e.g., the straight rule. Such methods are proven
to be access-optimal in specific prediction settings, but not in all. Within
the optimality-approach of meta-induction, success-based weighted pre-
diction methods are proven to be access-optimal in all possible continu-
ous prediction settings. However, meta-induction fails to be access-optimal
in so-called demonic discrete prediction environments where the predicted
value is inversely correlated with the true outcome.

In this paper the problem of discrete prediction environments is
addressed by embedding them into a synchronised prediction setting. In
such a setting the task consists in providing a discrete and a continuous
prediction. It is shown that synchronisation constraints exclude the
possibility of demonic environments.

Keywords: meta-induction, binary prediction games, qualitative belief, degrees of
belief, Lockean thesis, calibration

1 Introduction

Hume’s problem of induction poses a serious problem for the scientific task of
making predictions. On the one hand, predictions about unobserved data or
events are made by help of knowledge about already observed data or events.
On the other hand, there is no strict logical relation between observed and
unobserved data or events that would allow for a direct epistemic justification
for such an inductive transmission.

[420] Among the several proposals that were put forward to address this
problem is the so-called approach of meta-induction (cf. Schurz 2008). This
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approach justifies inductive methods via their ability to catch up with any
prediction method whatsoever in the long run. To be a little bit more pre-
cise, the meta-inductive justification of induction is twofold: First, a specific
meta-method for selecting predictions of any accessible method is proven to be
access-optimal in the long run regarding predictive success. A meta-method is
called ‘access-optimal’, if its predictive success is at least as high as that one
of the best accessible object-methods in the setting is. In a second step, taken
for granted the past success of classical inductive methods—something that is,
e.g., also not scrutinised by Hume himself (cf. Howson 2003, p.4)—it is shown
that also selecting these methods for predictions of unobserved data and events
allows for access-optimal predictive success. This holds as long as there is no
alternative method accessible which outperforms classical inductive methods.

There are several restrictions of the justification provided by meta-
induction. So, e.g., in contrast to the justification of deductive methods, meta-
inductive justification is not an absolute, but a relative one: It does not show
that induction will be predictively successful, but only that it is predictively
access-optimal; this means that there is no guarantee of a high number of cor-
rect or accurate predictions; it is only guaranteed that the number of correct or
the accuracy of the predictions is at least as high as that of the best accessible
object-methods. Furthermore, strict access-optimality results hold only for the
long run, i.e. for an infinite series of predictions.

Regarding the meta-inductive results on access-optimality there is another
restriction we will focus on in this paper. It is the problem of discrete predic-
tion settings, i.e. series of predictions about events whose outcomes are not
continuous or real-valued, but discrete (in the most specific case binary). The
problem is that strict access-optimality does not hold for such settings. And if
strict access-optimality does not hold, then the meta-inductive justification for
selecting inductive methods on the basis of their past success fails.

In order to address this problem, we are going to discuss proposed solu-
tions to it and highlight their advantages as well as their shortcomings. Then
we are going on to embed the problem in a broader prediction setting where
it is supposed that the methods are providing not only discrete predictions,
but also continuous ones. We will argue for the thesis that rules for bridg-
ing discrete or qualitative and continuous or quantitative predictions prevents
meta-inductive suboptimality in the discrete setting.

For this purpose we will start with a short sketch of the framework that
is used for making predictions, namely the framework of meta-inductive pre-
diction games (section 2). Afterwards the set of such prediction environments
is restricted to discrete prediction settings. The above mentioned problem for
such settings is posed and two solutions that are found in the literature are dis-
cussed (section 3). Finally, we will expand the discussion by an investigation
of the problem in a synchronised continuous and discrete prediction setting
(section 4).
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2 Meta-Inductive Predictions

The theory of meta-induction generalises Hans Reichenbach’s best alternatives
approach (cf. Schurz 2008, sect.2). Reichenbach proposed to consider the prob-
lem of induction not with respect to the strong requirement of [421] proving
that inductive methods are successful, but with respect to the much weaker,
but epistemically still highly relevant, requirement of proving that inductive
methods are the best methods accessible for making predictions. In his very in-
fluential “Experience and Prediction. An Analysis of the Foundations and the Struc-
ture of Knowledge” (1938) Reichenbach argues as follows:

1. “If we cannot realize the sufficient conditions of success, we shall at least
realize the necessary conditions. If we were able to show that the induc-
tive inference is a necessary condition of success, it would be justified;
such a proof would satisfy any demands which may be raised about the
justification of induction.” (p.348)

2. “Let us introduce the term ”predictable” for a world which is sufficiently
ordered to enable us to construct a series with a limit.” (p.350)

3. “The principle of induction [i.e. the straight rule which transfers the ob-
served frequency to the limit] has the quality of leading to the limit, if
there is a limit [i.e. if the world is predictable].” (p.353)

4. “But is it the only principle with such a property? There might be other
methods which also would indicate to us the value of the limit. [. . . ]
Imagine a clairvoyant who is able to foretell the value p of the limit
in such an early stage of the series [where the straight rule still fails];”
(p.353)

5. “The indications of the clairvoyant can differ, if they are true, only in the
beginning of the series, from those given by the inductive principle. In
the end there must be an asymptotical convergence between the indica-
tions of the clairvoyant and those of the inductive principle.” (p.354)

6. “If there is any method which leads to the limit of the frequency, the
inductive principle will do the same;” (p.355)

7. [Hence, asymptotical convergence or long run equality with the induc-
tive principle is a necessary condition for success in predictible worlds.]

8. [Hence, the inductive principle is justified regarding predictible worlds.]

Now, Reichenbach’s solution to the problem of induction is a very simple, but
also narrow one: If the world is predictable in the sense that for any distri-
bution under investigation there is a limiting frequency, then a method that is
defined as approaching this frequency in the limit (as, e.g., is guaranteed by the
straight rule (cf. Howson 2003, p.72)), will “lead to the limit”. It is clear that the
whole analytical argument is based on the specific interpretation of ‘a series
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is predictable’ as ‘there exists a limit of the series’ (cf. premise 2) and that by
this the meaning of ‘induction’ is some kind of “smuggled into” the meaning
of ‘prediction’.

However, one can try to weaken the assumptions made by Reichenbach
and still prove that following an inductive method is still a “necessary con-
dition” for predictive success in the sense that all other accessible methods
that are most successful converge with that inductive method. Exactly this
is done within the approach of meta-induction (cf. Schurz 2008): Here Hume’s
problem is framed as the problem of providing a successful prediction of the
outcome of an event Et+1 based on information about the outcome of events
E1, E2, . . . , Et. Similar to Reichenbach’s proposal, ‘predictive success’ is not de-
fined as a ‘correct or true prediction’, but as ‘best prediction accessible among
all alternatives’. Contrary to Reichenbach’s proposal, there are no constraints
whatsoever on the series of events E1, E2, . . . ; there might be a limiting fre-
quency of the distribution of properties within this series or not—it might be
predictable in the sense of premise 2 of Reichenbach’s argument or completely
random. Also different from Reichenbach’s framing of the problem, within
the approach of meta-induction it is argued for the predictive success of in-
duction on a meta-level instead of an object-level: Whereas the (inductive)
straight rule considered by Reichenbach is applied to the outcomes of the se-
ries of events E1, . . . , Et in [422] order to predict the outcome of event Et+1, the
meta-inductive method is applied to the outcomes of this series taken together
with the predictions made by all alternative methods—this is the reason why it
is called a ‘meta-method’. The underlying idea of applying the meta-inductive
method is that of selecting among predictions those whose predicting meth-
ods (e.g., the straight rule) were most successful in past. It can be proven that
such a selection procedure is most successful in the long run, i.e. its predictive
success converges with that of the best prediction methods considered in the
selection procedure. In this way one can say that the meta-inductive method
infers from past success future success; it is successful induction over success
rates. But here some more details: The framework of meta-induction are so-
called prediction games where one has the following ingredients (cf. Schurz and
Thorn 2016, sect.3, notation adjusted):

• E1, E2, . . . is an infinite series of events whose outcomes e1, e2, . . . are
within [0, 1]

• Pr1(Et), . . . , Prn(Et) are the predictions of Et (also elements of [0, 1]) of n
so-called object-level agents

• Prmi(Et) is the prediction of Et of a so-called meta-level agent

That the outcomes of the events are restricted to the interval [0, 1] is just an ide-
alisation which can be easily met by normalising outcomes: If, e.g., E1, E2, . . .
is a series of weather-events with temperature values as outcomes, one just has
to normalise via the highest possible temperature value in order to embed the
predictions into this setting.
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As we have said above, a meta-inductive method selects or “cooks up” a
prediction via past success rates; in order to keep track of success one might
first measure the score of a prediction about event Et by method Pri via mea-
suring the inverse of the error of the prediction:

score(Pri, Et) = 1 − |et − Pri(Et)|

And then one just sums up all the scores of Pri’s predictions on E1, E2, . . . , Et
and averages over them:

success(Pri, Et) =

t
∑

s=1
score(Pri, Es)

t

Now, there are several ways to try to infer via past success a prediction which
guarantees relative future success. One way, e.g., is to simply copy the most
successful method’s prediction (in case there are several equal successful ones,
one might just randomly select among them). This so-called simple meta-
inductivist predicts most successful in case there is a single expert-setting, i.e.
there is one method that turns out to be the most successful and there are not at
least two prediction methods that are equally successful, but oscillating more
or less close to the truth (cf. Schurz 2008, sect.4). However, a method that is
guaranteed to be access-optimal in all situations is the so-called attractivity
weighted meta-inductivist which assigns a weight to each method whose per-
formance was in the past at least as successful as itself. Note that a method
is access-optimal if it “predicts optimally in comparison to all candidate pre-
diction methods which are accessible to it, no matter what these methods
are, and in what environment one happens to be” Access-optimality has to
be distinguished from absolute optimality, which means that a method pre-
dicts optimally in comparison to all candidate prediction methods, regardless
of whether they are accessible to it or not (cf. Schurz and Thorn 2016, end of
sect.2). For the attractivity weighted meta-inductivist it holds that the higher
the past success of an attractive method, the higher [423] is also its weight.
In detail the weight of a method Pri for method Prj regarding event Et+1 is
defined as follows (cf. Schurz and Thorn 2016, sect.6):

weight(Pri, Prj, Et+1) =
max(0, success(Pri, Et)− success(Prj, Et))

n
∑

k=1
max(0, success(Prk, Et)− success(Prj, Et))

Note that the weights are success-based only and that methods that are worse
performing than Prj get weight 0. Based on these weights, the weighted-
average meta-inductive method predicts by weighting the relatively successful
methods’ predictions as follows (cf. Schurz 2008, sect.7):

Prmi(Et+1) =
n

∑
k=1

weight(Prk, Prmi, Et+1) · Prk(Et+1)
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In case there are no better performing methods, but also at the very beginning
(E1) the meta-inductivist’s prediction consists in the (unweighted) average of
all predictions.

As we have explained above, the idea behind the meta-inductive method
Prmi is quite simple; interestingly it proves to be very powerful regarding the
task of justifying induction in the sense proposed by Reichenbach: It can be
shown that there are quite narrow bounds of Prmi’s predictive success regard-
ing the best predicting methods. By transforming theorems of the machine
learning literature it is proven in (Schurz 2008, sect.7), that the upper and lower
bounds of Prmi’s success are as follows:

success(Prmi, Et) ≤ 1

success(Prmi, Et) ≥ success(Pri, Et)−
√

n
t

for all 1 ≤ i ≤ n

Interesting is the lower bound that states that Prmi’s success will differ by at
most

√
n/t (n being the number of methods under consideration; t being the

number of predictions already performed) from every single method’s suc-
cess rate and thereby also from the best performing methods’ success rates.
A consequence of this result is the following theorem on the long run acccess-
optimality of meta-induction:

lim
t→∞

success(Prmi, Et)− max(success(Pr1, Et), . . . , success(Prn, Et)) ≥ 0

So, the meta-inductivist’s success rate and that of the best performing methods
converge in the limit. As we have seen above, that is exactly what Reichenbach
has described as a necessary condition for predictive success. And what is
more, this result does not depend on any constraints of the event series under
investigation.

Given the access-optimality result of meta-induction, Hume’s problem of
induction is tackled in an a posteriori, but still non-circular way (cf. Schurz
2008, p.282): It holds analytically that meta-induction is an epistemically jus-
tified inductive method for the selection of prediction methods. Now, object-
level inductive methods as, e.g., the straight rule, have proven to be some of
the most successful prediction methods in past and by this are selected by the
meta-inductive rule for further predictions. Hence, one is epistemically jus-
tified in using the classical object-level inductive methods for making predic-
tions (as long as no other method outperforms them regarding predictive suc-
cess).

As we mentioned already in the introduction, there are several restrictions
of the justification provided by meta-induction. First, it is only an optimality-
justification instead of a maximality-justification. I.e., it does not demonstrate
predictive success absolutely, but [424] only with respect to accessible predic-
tion methods. If the latter perform bad, often also the former will perform
bad. However, in epistemic engineering it is commonly accepted to consider
such justifications as legitimate (cf., e.g., Reichenbach 1938, pp.349; Schurz
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2008, pp.281ff). As Hume has argued: There is no justification of induction
in an absolute sense; but this does not mean that there is also no justification
of induction in the sense of showing that it is the best one can do. For this
reason we agree here with the suggestion to accept optimality-based justifica-
tions in epistemology. What is more, in the light of the former impossibility,
the possibility highlighted by meta-induction seems to be even more valuable.

Also, one might object that the provided justification is only relative to
(publicly) accessible methods. But, again, if one accepts optimality based jus-
tifications at all within the epistemic realm, then it is almost trivial that all
considered prediction methods have to be accessible: Comparing predictive
success of prediction methods presupposes the accessibility of these methods.

What one might consider more pressing is the fact that strict access-
optimality holds only in the long run, i.e. for infinitely long series of pre-
dictions. However, as we have seen above, there are some clear bounds on
the meta-inductivist’s predictive success or failure. So, although there holds
no strict access-optimality for the short run, unavoidable losses in a finite se-
quence of predictions can be controlled for (cf. Reichenbach 1938, pp.354; and
Schurz 2008, p.286).

Regardless what stance one takes regarding these restrictions, there is one
problem which is located at the core of the meta-inductivist’s aim of justifying
induction: it is the problem of dealing with discrete prediction environments.

3 Discrete Prediction Environments

The results formulated in the preceding section hold for prediction games with
a continuous prediction space, i.e. both, the outcomes as well as the predictions
are within the interval [0, 1]. However, things are becoming more complicated
if the prediction space is discrete. For reasons of simplicity we restrict our
consideration to a binary prediction space (cf. Cesa-Bianchi and Lugosi 2006,
chpt.4). So, the outcomes of events E1, E2, . . . , i.e. e1, e2, . . . , are within {0, 1}
and also the prediction methods have to provide binary predictions. However,
our argument also holds for discrete predictions with more than two basic el-
ements in the prediction space; discretising and bridging becomes a little bit
more complicated then. For simple expression we add to the above framework
of prediction games the following ingredients:

• Bel1(Et), . . . , Beln(Et) are qualitative predictions on Et (elements of
{0, 1}) of the n object-level agents

• Belmi(Et) is a qualitative prediction about Et by the meta-level agent

Now, how could we define the qualitative or discrete meta-inductive method
Belmi? One could try to do this analogously to the quantitative or continuous
definition above, by just weighting the qualitative predictions of Bel1, . . . , Beln
according to their past success rate. However, it is clear that such a weighting
on it’s own would not produce a discrete or binary prediction (think, e.g., on
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n = 2 with Bel1(Et+1) = 1, Bel2(Et+1) = 0 and success-based weights of 0.5
for both methods which produces a weighted-average prediction of 0.5). So,
in order to produce a discrete prediction, one has to cut off or round the real-
valued [425] prediction to the closest discrete-value. Such a simple success-
based binary prediction method would be, e.g.:

Belmi(Et+1) = 1 if Prmi(Et+1) > 0.5
= 0 if Prmi(Et+1) ≤ 0.5

However, such a meta-inductive prediction method can no longer be proven to
be access-optimal in the long run. The reason is that at least two best perform-
ing object-level methods might oscillate in their success rates, but due to round-
ing, i.e. discretising, the meta-inductive method always prefers the wrong one.
Theoretically seen, the reason for this problem is that a loss-function defined
via such a rounding procedure is no longer convex (cf. Cesa-Bianchi and Lu-
gosi 2006, sect.4.1; and Schurz 2019, chpt.6.7). So, e.g., in our definition of
the score above we have used an inversion of the so-called natural loss func-
tion (where just the absolute difference between the true outcome and the pre-
dicted outcome is taken). Now, access-optimality results are proven only for
so-called convex loss functions (very briefly: if a function is convex in one of
it’s arguments, than there is no reversal of order between multiplying the ar-
gument and multiplying the value of the function by constants); the natural
loss function, e.g., is a convex loss function and therefore access-optimality can
be proven. But a loss function that would fit with rounding as is used in the
definition of Belmi above is no longer convex and a prediction method such
as Belmi can even be demonstrated to be suboptimal in some infinite series of
predictions of events (cf. Schurz 2019, prop.6-10).

More generally, success-based prediction fails in all so-called demonic sce-
narios. René Descartes described such scenarios as follows:

“Accordingly, I will suppose not a supremely good God, the source
of truth, but rather an evil genius, supremely powerful and clever,
who has directed his entire effort at deceiving me. I will regard
the heavens, the air, the earth, colors, shapes, sounds, and all ex-
ternal things as nothing but the bedeviling hoaxes of my dreams,
with which he lays snares for my credulity.” (Descartes 1637/1998,
par.22f)

In the best alternative approach the idea remains the same, although the struc-
ture is little bit more complex: Here demonic scenarios are defined as settings
in which at least one method is predictively successful, i.e., the success rate is
in the long run above 0, but in which the meta-level method is either not suc-
cessful at all, i.e. its success rate is 0, or it is at least sub-optimal with respect
to some accessible methods. Metaphorically speaking, in a demonic setting
the “evil genius” is feinting the meta-level method to a higher degree than the
object-level methods. We assume for a demonic setting that the success rates
of the object-methods are limited. Although this is a strong assumption, it
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is still weaker than Reichenbach’s assumption about the limit of the series of
the true event outcomes. Furthermore, we could not think of a discrete set-
ting where the meta-inductivist performs sub-optimally, although the success
rates of the object-methods are not limited. And finally, this assumption allows
us to generalise our approach to demonic scenarios with any finite number
of object-methods. Whether there are any discrete settings where the meta-
inductivist performs sub-optimally, although the object-methods’ success rates
are not limited, is a topic of further research. According to our extrapolation of
Descartes’ demon to the best alternative approach, a demonic scenario has the
following properties:

1. The object-method’s success rates are limited: For all 1 ≤ i ≤ n there
exists limt→∞(success(Pri, Et)).

2. [426] The meta-inductive method performs long run sub-optimally:
There is an 1 ≤ i ≤ n such that: limt→∞(success(Prmi, Et) −
success(Pri, Et)) < 0
Note that by this characterisation it is supposed that also the success rate
of the meta-inductivist or at least its upper bound with respect to the best
performing method(s) is limited.

(From these two assumptions it follows that at least one object-method is
predictively successful.)

In the continuous prediction setting the access-optimality results show that
there is no demonic scenario possible. Even if the world were demonic in the
sense that whenever Prmi predicts an event’s outcome (Prmi(Et) = r), then the
true outcome differs maximally from the prediction (et = 1 if r < 0.5 and et = 0
if r ≥ 0.5), even for this case the meta-inductive access-optimality results show
that also the object-level methods cannot perform better. So they also would
not gain success above that of the meta-inductivist in the long run.

Things are different in the discrete prediction setting: Here it is possible that
object-level methods are predictively successful, although due to necessary
rounding the meta-inductivist method remains unsuccessful. (Cesa-Bianchi
and Lugosi 2006, p.67) provide a nice example for such a demonic scenario:

• Let Bel1(Et) = 1 and Bel2(Et) = 0 for all t

• Now, let the true binary series of outcomes e1, e2, . . . be demonic with
respect to Belmi, i.e. Belmi(Et) = 1 − et for all t

Then Belmi must oscillate between preferring Bel1 and preferring Bel2
and lim

t→∞
success(Bel1, Et)) = lim

t→∞
success(Bel2, Et)) = 0.5, whereas

lim
t→∞

success(Belmi(Et)) = 0.

In the demonic scenario an equal success rate in the long run among the
object-level methods is the main cause for the meta-inductivist’s switching.
The success rates of at least the best-performing object-methods have to be
equal, because otherwise the meta-inductivist would in the long run simply

9



switch to that method with the highest success rate (if there is one best method
in the setting, then Prmi converges to the meta-method imitate the best—cf.
Schurz and Thorn 2016, sect.7). Only due to the equal success rates of the
best performing object-methods and the meta-inductivist’s oscillating between
them the method is prone to demonic failure.

An epistemic consequence one might draw is that depending on the na-
ture of events—whether they are continuous or discrete in nature—one is able
to provide a justification of induction or not. In this respect one might see a
parallel between the epistemic problem at hand and one that was discussed
more than three centuries ago regarding the role of continuous or discrete na-
ture in the applicability of formal methods: So, e.g., Gottfried Wilhelm Leibniz
famously argued for the assumption of a continuous nature: “Everything goes
by degrees in nature, and nothing by leaps, and this rule regarding changes is a
part of my law of continuity” (Leibniz 1896, Book IV, Sect.16, p.552); one main
motivation behind his argument for continuity in nature was to make the—by
him developed—formal mathematical tools applicable to a study of nature:

“[. . . ] Leibniz considered “transitions” of any kind as continuous.
Certainly he held this to be the case in geometry and for natural
processes, where it appears as the principle Natura non facit saltus.
According to Leibniz, it is the Law of Continuity that allows geom-
etry and the evolving methods of the infinitesimal calculus to be
applicable in physics.” (Bell 2013, sect.4)

[427] Bearing such an analogy in mind, is the meta-inductivist also forced to ar-
gue for a continuous, more induction-friendly, nature (cf. Schurz 2008, p.299)?
It seems not. At least it seems not to be the most preferable way to go.

What seems to be more preferable is to find ways of approximating the
access-optimality results for a continuous setting within a discrete one. In the
literature two approaches are proposed. We will discuss them in the following
two subsections. Afterwards we are going to expand the investigation to syn-
chronised continuous and discrete settings with the aim of ruling out demonic
scenarios via such a synchronisation.

3.1 The Randomisation Approach

The randomisation approach is common in machine learning and tries to over-
come the gap between access-optimality in a continuous and discrete setting
via randomly picking out a prediction in such a way that the outcome is still
biased towards an access-optimal prediction method (cf. Cesa-Bianchi and Lu-
gosi 2006, chpt.4). The idea is as follows: In predicting an event outcome one
does not consider only past event outcomes, but all possibilities of past and
present event outcomes; then one defines a prediction method that—regarding
the binary setting—randomly predicts 0 or 1, but is—regarding a continuous
setting—biased towards the ideal calculated value of the continuous setting.
So, averaging over all possibilities, the method approaches the ideal calcu-
lated value in the finite case and reaches it in the long run. The details are
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as follows—this presentation is in accordance with (Schurz 2019, chpt.6.7.1): In
order to explain the randomisation approach in detail, we expand the predic-
tion setting further by the following elements:

• Belrmi(Et) is a qualitative prediction on Et by a randomising meta-level
agent

• E1, E2, . . . is an infinite series of an infinite series of events; we identify E1
with the infinite series of events above: E1 = E1, E2, . . . ; and we use sub-
sub-indices to pick out specific events: E11 = E1; analogously we refer
to the outcome of the single events by e, as, e.g., in e11 = e1; finally, in
the definitions of the score, success, and weight of an agents’ prediction
the series of events is always restricted to that provided in the argument
place;

The binary randomising meta-inductive agent Belrmi predicts within the limits
of:

P(Belrmi(Et) = 1) ≈ Prmi(Et)

Here P(Belrmi(Et) = 1) is the frequency of Belrmi predicting 1 in round t of
all |{0, 1}t| possible series of binary event outcomes. Take, e.g., the outcomes
of series of events as given in table 1 with the object-level predictions Bel1 and
Bel2 (where e1 = e is still considered to be the true series of outcomes, the other
series of outcomes e2–e8 are the past outcomes, that are up to t = 3 possible; up
to t = 4 there are 16 series possible, including the true outcome, etc.). Then a

t = 1 t = 2 t = 3 . . .
e6 0 0 0
e2 0 0 1
e3 0 1 0
e4 0 1 1
e5 1 0 0
e1 1 0 1
e7 1 1 0
e8 1 1 1
Bel1 1 1 1 1
Bel2 0 0 0 0
Prmi 0.5 1.0 0.5 0.6

Table 1: Example of predictions of two object-methods (Bel1, Bel2) and one
success-based weighting meta-method (Prmi)

randomising meta-inductive method within the above stated limits would pre-
dict, e.g., according to table 2. Of course there are numerous other randomising
meta-inductive methods possible; important is only that their (weighted) aver-
age over all possible event series Belrmi(E) coincides with the prediction made
according to weighted-average meta-induction (Prmi).
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t = 1 t = 2 t = 3 . . .
Belrmi(E1) 1 1 0 1
Belrmi(E2) 1 1 0 1
Belrmi(E3) 1 1 0 1
Belrmi(E4) 1 1 0 1
Belrmi(E5) 0 1 1 1
Belrmi(E6) 0 1 1 0
Belrmi(E7) 0 1 1 0
Belrmi(E8) 0 1 1 0

Belrmi(E) 0.5 1.0 0.5 0.6

Table 2: Example of a ranomised success-based meta-method: Such a method
predicts in the binary case on average as often 1 as its real-valued prediction
would be. So, e.g., given the real-valued predictions of table 1, it predicts in
50% of t1-cases (where Bel1(E1) = 1 and Bel2(E1) = 0) 1 and in 50% of such
cases 0. Analogously for all other cases. Which prediction the meta-method
makes in the end is chosen randomly/arbitrarily, but biased towards the real-
valued prediction. For the optimality result important is the fact that the exact
choice of the meta-method Belrmi(Eit) is probabilistically independent from the
true outcome E1t .

Now, assume that the pattern of the binary sequences in 1 ≤ t ≤ 3 goes on
this way; as can be seen in the tables above, a randomising meta-inductivist
method would not approach the best predictor’s success rate in every possi-
ble event series. However, one might wonder whether something weaker can
be shown, like that on average randomisation in a discrete setting based on a
continuous success-based prediction is long run [428] access-optimal? Indeed,
if one defines a measure for expected success via the success of Belrmi with re-
spect to an event series Ek weighted by the probability of Ek itself (which is
a function of Belrmi’s predictions), then one can transfer the optimality result
for expected success to the discrete setting. The quite complicated formula
for expected success is as follows (the big product produces the value for the
probability of each event series Ek):

expsuccess(Beli, Et) =

|{0,1}t |

∑
k=1

t

∏
l=1

(1 − Beli(Ekl
)− ekl

+ 2 · Beli(Ekl
) · ekl

) · success(Beli, Ekt)

Under a specific assumption, in the discrete setting the bounds for expected
success of the randomising meta-inductivist are analogous to that of the
weighted-average [429] meta-inductivist’s prediction in the continuous setting
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(cf. Schurz 2019, sect.6.7.1, prop.6-11):

expsuccess(Belrmi, Et) ≤ 1

expsuccess(Belrmi, Et) ≥ expsuccess(Beli, Et)−
√

n
t

for all 1 ≤ i ≤ n

Again, strict access-optimality holds for the long run only. Crucial for these
bounds is an independence assumption stating that the true outcome and the
prediction of the randomising meta-inductivist are probabilistically indepen-
dent in the following way:

P(Belrmi(Et) = 1|Et = 1 & Prmi(Et) = r) =

P(Belrmi(Et) = 1|Prmi(Et) = r) for all r ∈ [0, 1]

A feature of randomisation in discrete settings is its structural closeness
to the continuous case. However, considering the independence assumption
above it is clear that a demonic scenario is ruled out only by stipulation. Fur-
thermore, the relativisation of the optimality result to expected predictive suc-
cess instead of predictive success per se opens another dimension into the infi-
nite whose trend is even opposed: Whereas in the continuous case strict access-
optimality is restricted to the long run, i.e. to infinite series of predictions, in
the randomising approach access-optimality is restricted to the long run as well
as to weighted averaging among the set of possible outcomes; since the num-
ber of possible event outcomes increases with the number of predictions, in the
long run, information about expected success decreases.

Now we go on to consider another proposal that is about access-optimality
of predictive success per se in a discrete setting.

3.2 The Meta-Meta Approach

In (Schurz 2008, sect.8) a set of qualitative meta-inductive prediction methods
is defined which, on average, transforms access-optimality results for a con-
tinuous setting to the discrete realm. The idea is as follows: If one wants to
approach a value of a continuum by help of discrete values, one may arrange
discrete values around the value of the continuum in such a way that the aver-
age of the discrete values is close to the value of the continuum. E.g., one can
approach/reach 0.5 ∈ [0, 1] by averaging over the elements of {0, 1}. Similarly
for 0.75 ∈ [0, 1] by averaging over elements of {0, 1}: 0.75 = (0 + 1 + 1 + 1)/4.
Now, in a discrete setting, like the binary setting, only discrete predictions, e.g.,
binary predictions, are admissible. So, every method can predict only a value
out of {0, 1}. However, the number of prediction methods is in principle not
fixed. This can be exploited by a meta-strategy by settling around the value of a
continuum 0/1-predicting methods in such a way that on average the value of
the continuum is approached. So, e.g., if the calculated ideal prediction is 0.25,
then the meta-method can approach it by averaging over one 1-predictor and
three 0-predictors: 0.25 = (1 + 0 + 0 + 0)/4. In the binary prediction setting
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no meta-method can exploit this fact directly, because averaging over the pre-
dictions leaves the binary value space. However, on a meta-meta level where
one can compare successes of object- and meta-methods as, e.g., we are doing,
a meta-meta-method can average over the single prediction method’s success
and can exploit this on the meta-meta-level.

[430] In order to indicate such a meta-meta-method, we add to the discrete
prediction setting a group of binary meta-inductive methods:

• Belmi1(Et), . . . , Belmik (Et) are the qualitative predictions on Et of k meta-
level agents

Now, Gerhard Schurz has found an interesting way of emulating real-valued
success-based predictions in the discrete setting by defining the meta-inductive
predictions as follows ([·] rounds to the next integer, as, e.g. [0.75] = 1, [0.25] =
0, [0.5] = 1):

Belmii (Et) = 1 if i ≤ [Prmi(Et) · k]

= 0 otherwise

So, if, e.g., k = 10 and the ideal (continuous) predicted value Prmi(Et) = 0.75,
then the first seven meta-inductivists predict 1 (1, . . . , 7 ≤ 0.75 · 10), and the
remaining three meta-inductivists predict 0 (8, . . . , 10 > 0.75 · 10). By this a
meta-meta-inductivist can exploit the meta-inductivists’ predictions by aver-
aging and approximating 0.75 by 0.7. In this case, using only a subset of four
meta-inductivists would perform better. It turns out that, although each meta-
inductivist’s success rate is not bounded by the object-level methods’ success
rates, the average of them is (cf. Schurz 2008, p.299):

success(Belmi, Et) ≤ 1

success(Belmi, Et) ≥ success(Beli, Et)−
√

n
t
− 1

2 · k
for all 1 ≤ i ≤ n

So, for the long run, i.e. the limiting case, the distance of the average shrinks
as a function of the number of meta-level methods k to 1/(2 · k). The trick
of this “collective average-weighting method” is to mimic access-optimality in
the real-valued case, which is achieved by, lets say, Prmi(Et) = r, via bringing
Belmi(Et) as close as possible to r. It is, so to say, lifting the binary predication
game onto a meta-meta level of a prediction game with 1/(2 · k) (with arbitrary
high k) as the smallest approximatable unit.

Averaging success rates means that the meta-inductive agents
Belmi1 , . . . , Belmik have to share their success. According to the general
impossibility result regarding a demonic setting one cannot define a meta-
method which takes as input the predictions of Belmi1 , . . . , Belmik and produces
a prediction on its own. So, one might say that in order to deal with the
problem of discrete predictions from a meta-inductive perspective one is
forced to act as a collective.
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The main advantage of this approach is to be found in its applicability to
any prediction setting whatsoever. One also does not have to exclude a de-
monic scenario by stipulation, as is done in the randomization approach. Al-
though in such a setting all meta-inductivist methods might perform subop-
timally, on average these methods approximate access-optimal performance.
However, it guarantees approximation of access-optimality only in the long run.
As we have seen, the lower bound of the average success rate is in the long run
max(success(Bel1, Et), . . . , success(Beln, Et))− 1/(2 · k). Now, although k might
be chosen arbitrarily high, one cannot achieve equal success rates in the long
run. In order to achieve strict access-optimality one might think of introducing
infinitely many meta-inductive methods and by this get: limk→∞1/(2 · k) = 0.
However, as is shown in (Arnold 2010), a meta-method cannot be based on
infinitely many methods in order to achieve access-optimality. So, for some
demonic scenarios even the collective of meta-inductive methods will predict
suboptimally.

[431] To sum up, discrete prediction settings allow for demonic scenarios;
randomisation allows for weak access-optimality in the sense of convergence
of expected success rates with that one of the best object-level method accessi-
ble, but at cost of stipulating independence between meta-inductive prediction
and true outcome, thus stipulating that demonic scenarios are impossible. On
the other hand, collective meta-induction allows for an approximation of av-
erage success as accurate as one wishes; however, strict convergence is not al-
ways possible and by this also a collective of meta-inductive methods performs
suboptimal in at least some demonic settings, even in the long run. This facts
seem to suggest that in order to approach the problem of induction within a
discrete setting one has to enrich the structure of the problem and try to prove
meta-inductive access-optimality or the impossibility of a demonic setting for
such an enriched structure. This is the line of argumentation we are following
in the next section by considering the problem of demonic settings within a
synchronised prediction environment.

4 An Approach via Synchronisation Constraints

As we mentioned in the preceding section, we suggest structural enrichment
for solving the problem of suboptimal success-based predictions in a discrete
setting. The structure we are interested in is a synchronised setting. So, we
combine a discrete prediction setting with a continuous one and put forward
some synchronisation constraints. We aim at showing that, given these con-
straints, demonic scenarios are impossible. Demonic scenarios underlay the
meta-inductivists suboptimality. So, arguing for the impossibility of such de-
monic scenarios in a synchronised setting is the same as to argue for the opti-
mality of meta-induction in all reasonable synchronised settings.

The formalism we introduced above was chosen in such a way that we just
have to re-interpret it. By this we can put forward the constraints for the new
structure of the problem (or one might also call it ‘the structure of the new

15



problem’):

• The discrete prediction setting consists of:

– E1, E2, . . . an infinite series of binary events whose outcomes
e1, e2, . . . are within {0, 1}

– Bel1(Et), . . . , Beln(Et) which are, as before, the binary predictions on
Et (elements of {0, 1}) of the n object-level agents

– Belmi(Et) which is, also as before, the binary prediction on Et by the
meta-level agent

• The continuous prediction setting consists of:

– The same series of binary events

– Pr1(Et), . . . , Prn(Et) which are real-valued predictions on Et (ele-
ments of [0, 1]) of the n object-level agents

– Prmi(Et) which is a real-valued prediction on Et of the meta-level
agent

Now, Bel is interpreted as qualitative belief or acceptance in the sense that
⌜Beli(Et) = 1⌝ is supposed to mean that according to method i et = 1 or just
simply: agent i believes that Et will take place; analogously ⌜Beli(Et) = 0⌝
means that agent i believes that Et will not take place. Note that we assume
here that beliefs are complete in the sense that for every event Et the agent ei-
ther believes that it will take place or believes that it will not take [432] place. In
principle one might try to relax the completeness condition by allowing agents
to abstain from judgement. But then, of course, the question arises of how to
adequately take into account abstention in scoring. We will stick to the ideali-
sation of completeness, this the more since under specific circumstances expert
knowledge also spreads from object-level methods to meta-level methods in a
setting with restricted access only, where restricted access might be equalised
with incompleteness (for details cf. Thorn and Schurz 2012, sect.7f).

Similarly we re-interpret Pr: ⌜Pri(Et) = r⌝ is now supposed to mean that
i’s degree of belief that Et will take place is r. (NB: In the discussion above
⌜Pri(Et)⌝ is to be interpreted as the predicted value of Et by i, which satisfies
completely different truth-conditions, although due to the simple logical struc-
ture it is formally equivalent). Regarding scoring, this re-interpretation seems
to be fine inasmuch as scoring can be directly related to betting behaviour. If
outcomes are binary, it holds that the more an agent tends to extremes (0, 1),
the higher are also her chances in scoring well. But at the same time also her
risk is of not scoring at all—so scoring tends also to the extremes then. And
the more an agent tends to the indefinite (0.5), the safer she scores, but also the
smaller the scores. In the case of a constant degree of belief of 0.5, expected
predictive success will be equal to a randomisation among all possible event
series as, e.g., is the case of flipping a fair coin—which is, to say the least, not a
remarkably good benchmark.
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Given such an expanded structure, what rationality constraints can be put
forward? In the light of the re-interpretation provided above it seems to be
appropriate to put forward synchronisation principles between the qualitative
and the quantitative series of beliefs. The first principle we think of is a syn-
chronisation principle that acts event-wise between these systems. It is a very
specific case of the so-called Lockean thesis and states that a degree of belief
above a specific threshold is necessary and sufficient for qualitative belief or
acceptance. Since we are dealing with complete qualitative belief, the natural
threshold is 0.5. Otherwise the situation could arise that one qualitatively be-
lieves a proposition and disbelieves its negation, although one’s degree of be-
lief in the proposition is strictly lower than the degree of belief in the negation,
which sounds at least paradoxical (cf., e.g., Leitgeb’s critique of Lin & Kelly’s
approach in Leitgeb 2017). Since this synchronisation principle is event-wise,
we call it a ‘synchronous synchronisation principle’. It is as follows:

Beli(Et) = 1 if Pri(Et) > 0.5
= 0 otherwise

(SynSync)

The case of Pri(Et) = 0.5 is, epistemically speaking, not clearly regulated—
regarding complete belief one might belief or disbelief that Et will take place.
For our argument below one can uphold a principle (SynSync∗) similar to (Syn-
Sync) above, where Pri(Et) = 0.5 enforces one to set Beli(Et) = 1. What mat-
ters only is that all cases of Pri(Et) = 0.5 are treated the same way, i.e. enforce
either Beli(Et) = 0 or Beli(Et) = 1. (SynSync) can be also expanded to discrete
settings with more than two admissible qualitative predictions. If, e.g., there
are three qualitative predictions admissible ({0, 0.5, 1}), then one could state
that Beli(Et) = 1, if Pri(Et) > 2/3, Beli(Et) = 0.5, if 1/3 < Pri(Et) ≤ 2/3, and
Beli(Et) = 0, if Pri(Et) ≤ 1/3. However, such a general bridging between the
quantitative and the qualitative realm needs further argumentation; in the liter-
ature often so-called non-epistemic values are cited for such a bridging (cf., e.g.,
Longino 2008). Note that the binary meta-inductive prediction method Belmi of
section 3 satisfies this constraint by definition. For all object-level methods in a
demonic scenario (SynSync) poses no problem, since they can [433] easily pick
out a (partial) probability function that satisfies for each event this constraint.
In the demonic example mentioned above the agents with Bel1(Et) = 1 and
Bel2(Et) = 0 might simply equate their constant qualitative belief with their
quantitative one.

Beside this constraint we suggest another one for diachronic considerations.
The idea is as follows: An agent i might believe or disbelieve and have an
event-wise synchronised degree of belief above or below the threshold 0.5 re-
garding the event’s taking place or not. However, the event-wise synchroni-
sation does not oblige i to synchronise her degrees of belief according to her
qualitative predictions in the long run. Take, e.g., an agent i with the alter-
nating acceptance behaviour and equal degrees of belief according to table 3.
Although both epistemic attitudes towards Et are event-wise synchronous, one
might ask whether it is rational for i to stick to her degrees of belief also in the

17



t=1 t=2 t=3 t=4 t=5 t=6 · · ·
Beli(Et) 1 0 1 0 1 0 · · ·
Pri(Et) 1.0 0.0 1.0 0.0 1.0 0.0 · · ·

Table 3: Example of qualitative and quantitative predictions

long run or whether she should at some point in time s adopt her degrees of
belief also according to her past prediction behaviour? We think that in or-
der to be diachronic synchronous too, agents should also calibrate—although
it should be highlighted that this is already a much stronger assumption than
that of synchronous synchronisation.

How should calibration in such a setting work? Of course we do not sug-
gest to oblige the agent to calibrate directly according to the past outcomes—
this would lead to a constraint of applying the straight rule. The straight rule
is to be considered as a possibility for an object-level method; but it (or con-
vergence in the limit with it) is not to be considered as a necessary condition
for rationality. We have seen in the discussion of section 2 that Reichenbach’s
argument for the straight rule holds only in “predictable cases”, but not in
general as, e.g., in demonic scenarios. On the other hand, calibration accord-
ing to past predictions alone seems to be a constraint too weak to be upheld.
It would not ground the agent’s degrees of belief to (experimental) outcomes
at all. In the example given above the agent was obliged to calibrate her de-
grees of belief in the long run, i.e. starting at a point in time s, to 0.5; and this
regardless of the past outcomes. What seems to be more reasonable is to de-
mand calibration with respect to one’s own predictions and the past outcomes.
Recall that according to the definition above, success combines both via keep-
ing track of an agent’s true predictions in comparison to all predictions made
so far by her. For this reason we suggest as a middle ground between purely
outcome-oriented calibration and calibration that is based on past predictions
only: success-oriented calibration for diachronic synchronicity. So, we think
that in the long run an agent’s degrees of belief should be calibrated by her
success rate in the following way:

There is a s, such that for all r ≥ s:
Beli(Er) = 1 ⇒ Pri(Er) = lim

t→∞
success(Beli, Et)

Beli(Er) = 0 ⇒ Pri(Er) = 1 − lim
t→∞

success(Beli, Et)

(DiaSync)

The principle (DiaSync) states about quantitative belief, in order to be di-
achronically synchronised, the following: There is a point in the series s such
that for all events following Es, i.e. for all Er with r ≥ s, the quantitative belief
regarding Er’s taking place (Pri(Er)) [434] equals the limiting success rate re-
garding Beli. It is clear that (DiaSync) holds only, if the success rate is limited.
This means that there is a point in the series where the success rate is fixed,
where the object method reached an “equilibrium” regarding closeness of the
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predictions to the truth. The idea is that s is after such a limiting point.
(DiaSync) can be expanded also to a discrete setting where the number of

admissible predictions is greater than two, not only in {0, 1}. So if, e.g., the
admissible quantitative predictions are in {0, 0.5, 1}, then for Beli(Er) = 1
and Beli(Er) = 0 things may remain as in (DiaSync); and with respect to
Beli(Er) = 0.5 the degree of belief in Er’s taking place may be equalised with
the value in-between them; the third value of such a discrete setting may then
be plausibly interpreted as suspension of judgement (the outcome may be inter-
preted as indetermined). That there is always a plausible interpretation for a
qualitative value in such an extended diachronic synchronisation principle is,
of course, not guaranteed. But if there is a “bridge” between the qualitative
and quantitative system under investigation, then it seems that one can also
make sense of an extended diachronic synchronisation principle.

In our description of demonic scenarios in section 3 we have stipulated that
in such scenarios the success rates of the object-methods are limited. So, (Di-
aSync) is supposed to hold for quantitative beliefs in such scenarios. If an agent
believes that an event Er will take place, then her degree of belief in Er’s taking
place should cohere with her past performance in predicting E-events. And if
an agent believes that an event Er will not take place, then her degree of belief
in Er’s not taking place should—completeness of belief presupposed—equal
the inverse of her degree of belief in Er’s taking place. We have argued above
that just considering the event outcomes in calibration would be inadequate
since it would enforce the straight rule. Such a calibration principle might be
considered as a purely empirical constraint. On the other hand, just calibrating
according to one’s past predictions seems to be without any empiristic spirit at
all. An agent would be considered diachronically rational if she just sticks to
her method. In case the used method is a priori, also the calibration principle
would lead from a priori predictions to a priori ones. Hence, one might consider
such a principle as rationalistic in spirit. By stipulating diachronic coherence
of predictions through equalising degrees of belief with limiting success rates
(if they exist), we think one gets the right spin from both camps: One remains
in an empirically informed way with one’s method.

It should be mentioned here that the diachronic synchronisation principle
is used not as a reflection principle in our argument. It is not intended that de
facto an agent should be supposed to update her degrees of belief according to
her success rate—since this information is available only for the limiting case
such an application would be too much to ask for. However, we, talking about
demonic scenarios and having knowledge about the limiting case, may reason-
ably put forward constraints also for this case. And we think that from this per-
spective (DiaSync) is reasonable to ask for. Note that also the meta-inductive
solution to the problem of induction holds strictly speaking only for the limit-
ing case—only for this case it can be shown that the meta-inductive weighting
method is among the best accessible methods within the setting (although, of
course, the short run results demonstrate some kind of “epistemic controlla-
bility” by help of meta-induction). In order to uphold access-optimality (Di-
aSync) just adds another consideration to the limiting case: Meta-induction
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remains access-optimal also in a setting where discrete predictions are coupled
with continuous ones, if all the agents within the setting are diachronically co-
herent, i.e. calibrated.

According to this proposal, the alternating predictions above would force
an agent to calibrate her degrees of belief depending on the outcomes of the
events as given in table 4. [435] In the first case, predictions are in complete

t=1 t=2 t=3 t=4 t=5 t=6 · · · · · ·
Beli(Et) 1 0 1 0 1 0 · · · · · ·

Et 1 0 1 0 1 0 · · · · · ·
success(Pri, Et)

1
1

2
2

3
3

4
4

5
5

6
6 · · · 1

Et 0 1 0 1 0 1 · · · · · ·
success(Pri, Et)

0
1

0
2

0
3

0
4

0
5

0
6 · · · 0

Et 1 1 1 1 1 1 · · · · · ·
success(Pri, Et)

1
1

1
2

2
3

2
4

3
5

3
6 · · · 1

2

Et 0 0 0 0 0 0 · · · · · ·
success(Pri, Et)

0
1

1
2

1
3

2
4

2
5

3
6 · · · 1

2

Table 4: An example of predictions and their corresponding success-rates
showing that object-predictors in a demonic scenario are not calibrated accord-
ing to (DiaSync)

agreement with outcomes, so it seems to be plausible that an agent trusts com-
pletely in her prediction method (regarding qualitative belief) in the long run;
analogously in the second case, where predictions are in complete disagree-
ment with outcomes; here it seems to be plausible that an agent distrusts her
prediction method (regarding qualitative belief) completely in the long run. Fi-
nally, in the third and fourth case, where just 50% of the predictions are correct,
an agent should trust in her method (regarding qualitative belief) no more, but
also no less, than trusting in flipping a fair coin. Note that the last two cases
represent the object methods in our example of a demonic scenario (we just
switched the values predicted by the methods with that of the event outcomes
here).

Let us apply the framework presented above to the problem of demonic
scenarios. Now, as was pointed out in section 3, in a demonic setting the suc-
cess rates of the relevant, i.e. the best, object-level agents converge. So, it holds:

lim
t→∞

success(Bel1, Et) = lim
t→∞

success(Bel2, Et)

But then, in order to be diachronically synchronised, the degrees of belief of
the agents are also calibrated equally in the long run: By (DiaSync) we get for
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some point s in E (in case s differs agent-wise one has to choose the “larger”
one):

There is a s, such that for all r ≥ s:
Bel1(Er) = 1 ⇒ Pr1(Er) = lim

t→∞
success(Bel1, Et)

=

Bel2(Er) = 0 ⇒ Pr2(Er) = 1 − lim
t→∞

success(Bel2, Et)

Since in the binary case with two admissible predictions of the demonic sce-
nario the object-level agents’ success rates are 0.5, by (SynSync) we get indis-
cernibility of qualitative beliefs, i.e. we get for some point s in E that for all
r ≥ s:

Bel1(Er) = Bel2(Er)

But then the meta-level agent Prmi and her qualitative counterpart Belmi would
at some point in E predict exactly the same way as both object-level agents
Pr1, Bel1 and Pr2, Bel2 [436] do. So the object-level and the meta-level meth-
ods’ success rates would converge which means that the setting cannot be a
demonic one.

This result also holds for a binary demonic scenario with more than two
object methods, since their success rates still have to converge in order to be
attractive for the meta-inductive method; by this, again, their degrees of be-
lief converge (DiaSync); and by this, again, their qualitative beliefs converge
(SynSync). In case the admissible predictions are not binary, but discrete to a
degree greater than 2, also demonic scenarios are impossible. Consider, e.g.,
the case where Bel1(Et) is constantly 1, Bel2(Et) is constantly 0, and Bel3(Et)
is constantly 0.5. Their success rates also have to converge and can be maxi-
mally 1/3. But then, by an expanded version of (DiaSync), Pr1(Er) (for all r ≥
some s) equals also a value ≤ 1/3. However, this would be incoherent with an
expanded version of (SynSync), enforcing, e.g.: Pr1(Er) > 2/3.

5 Conclusion

As we have seen in the foregoing sections, meta-induction is a quite powerful
approach for the epistemic justification of inductive methods. However, the
approach falls short of its aim when inductive methods are applied to discrete
prediction settings. In such settings, so-called demonic scenarios are possible
which allow for suboptimality in meta-inductive predictions in the long run.

Demonic scenarios are characterised as prediction settings where the meth-
ods that are to be justified fail in all their predictions, whereas rival methods
gain at least some predictive success. In order to overcome this problem, two
solutions were suggested in the literature. One is the randomisation approach
according to which the discrete meta-method should predict randomly, but
with a bias towards the continuous meta-method’s prediction. A shortcoming
of this solution is that it does yield to access-optimality only, if one presupposes
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probabilistic independence between the prediction of the meta-method and the
true outcome which is the same as stipulating the impossibility of demonic sce-
narios. The other approach is the theory of collective weighted-average meta-
induction which introduces a collective of meta-level methods whose average
is proximally access-optimal. A shortcoming of this solution is its incapabil-
ity of proving strict access-optimality and that the needed collectives are not
generally available.

For this reason we suggested to enrich the formal structure of the prob-
lem by combining a discrete and a continuous prediction setting. The former is
about qualitative belief; the latter about degrees of belief. To keep both systems
synchronised we suggested two synchronisation principles: an event-wise syn-
chronisation principle (SynSync) according to which qualitative and quantita-
tive belief should be bridged via a threshold (simple version of Lockean thesis).
And a diachronic synchronisation principle (DiaSync) according to which both
beliefs should be bridged via calibration by help of success rates. Our main
argument against the possibility of a demonic scenario in such synchronised
settings runs as follows:

1. A demonic setting with successful agents enforces different qualitative
beliefs, but equal success rates in the long run among the relevant object-
level agents. (cf. sect. 3)

2. Equal success rates in the long run enforce equal calibration of degrees of
belief. (cf. DiaSync)

3. [437] Equal calibration of degrees of belief enforces equal qualitative be-
liefs. (cf. SynSync)

4. Hence, no demonic setting satisfies synchronic and diachronic synchro-
nisation constraints at the same time. (1–3)

So, in case of a richer structure of prediction tasks meta-inductive subopti-
mality can be overcome by putting forward synchronisation constraints: If
all agents in the combined qualitative and quantitative setting are rational in
the sense that they are synchronically and diachronically synchronised (cali-
brated), then no demonic scenarios are possible and by this meta-induction
remains access-optimal.
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